
Picasso: Lightweight Device Class Fingerprinting
for Web Clients

Elie Bursztein Artem Malyshev Tadek Pietraszek Kurt Thomas
Google, Inc

{elieb, artemm, tadek, kurtthomas}@google.com

ABSTRACT
In this work we present Picasso: a lightweight device class fin-
gerprinting protocol that allows a server to verify the software and
hardware stack of a mobile or desktop client. As an example, Pi-
casso can distinguish between traffic sent by an authentic iPhone
running Safari on iOS from an emulator or desktop client spoofing
the same configuration. Our fingerprinting scheme builds on unpre-
dictable yet stable noise introduced by a client’s browser, operat-
ing system, and graphical stack when rendering HTML5 canvases.
Our algorithm is resistant to replay and includes a hardware-bound
proof of work that forces a client to expend a configurable amount
of CPU and memory to solve challenges. We demonstrate that Pi-
casso can distinguish 52 million Android, iOS, Windows, and OSX
clients running a diversity of browsers with 100% accuracy. We
discuss applications of Picasso in abuse fighting, including protect-
ing the Play Store or other mobile app marketplaces from inorganic
interactions; or identifying login attempts to user accounts from
previously unseen device classes.

1. INTRODUCTION
Mobile app stores and web services routinely face automated

abuse from attackers who masquerade as legitimate clients in or-
der to flood APIs and servers with fake installs, fake reviews,
spam comments, scraping requests, and other synthetic interac-
tions. More than a mere nuisance, these actions result in billions
of inflated views on YouTube [13], millions of fake accounts on
Facebook and Twitter [8, 9], and feed into other threats such as
large-scale compromise that victimize a service’s user base [14,26].
This problem is exacerbated in part by the indistinguishability of
authentic clients from scripts and emulated environments that triv-
ially spoof the personas (e.g., User-Agent) of organic traffic.

We address the challenge of client spoofing by introducing Pi-
casso: a lightweight device class fingerprinting protocol that allows
a server to accurately determine the browser, operating system, and
graphical stack of a web browsing client. As an example, Picasso
allows a server to distinguish between traffic sent by an authentic
iPhone running Safari on iOS from an emulator or desktop spoof-
ing the same configuration. Our detection granularity is limited

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPSM’16 October 24-24 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4564-4/16/10.

DOI: http://dx.doi.org/10.1145/2994459.2994467

to device classes; unlike device fingerprinting, we cannot uniquely
distinguish two clients operating the same browser and hardware.
Nevertheless, Picasso has a wide range of applications in abuse
fighting that includes verifying the authenticity of mobile clients
that interact with the Play Store and other mobile app markets or
identifying login attempts to user accounts from foreign, previously
unseen device classes.

We design our fingerprinting scheme as a challenge-response
protocol that builds on unpredictable yet stable noise introduced
by a client’s software and hardware. Our algorithm is resistant to
replay and includes a hardware-bound proof of work that forces a
client to expend a configurable amount of CPU and memory to pro-
duce a valid response that cannot be offloaded to more powerful de-
vices of a different type or even emulators of the same device class.
Finally, we design Picasso to support a real world deployment that
encompasses a wide class of devices and bandwidth constrained
environments.

In practice, Picasso relies on multiple rounds of drawing HTML5
canvas graphical primitives to surface divergent implementation be-
haviors across device classes. We expand on the work of Mow-
ery et al. and Laperdrix et al. that found canvas rendering differ-
ences produce enough entropy to distinguish individual devices
[16, 20]. However, unlike this previous work, we assume an ad-
versarial model where attackers actively try to spoof responses and
have perfect knowledge of our system’s algorithm. Furthermore,
the success of our scheme hinges on identifying HTML5 canvas op-
erations that minimize entropy between devices of the same class,
but maximize entropy across distinct device classes—antithetical
requirements compared to prior device fingerprinting work. To ac-
complish this, we experimentally validate that a select collection
of graphical primitives (e.g., writing text, drawing Bézier curves)
can produce both unique outputs for device classes that are stable
across all devices within the class when tested on a diverse set of
250,000 web clients.

We illustrate Picasso’s real-world effectiveness by serving Pi-
casso challenges to a sample of 52 million clients connecting to
Google. We distinguish between Android, iOS, Windows, and Mac
clients running a diversity of browsers with 100% accuracy. In the
process, we identify a brute force login attack that spoofed a vari-
ety of User-Agents that Picasso uniquely identified as PhantomJS
running on cloud machinery. Furthermore, we show that Picasso
accurately distinguishes between emulated hardware and real hard-
ware otherwise operating identical software stacks.

2. DESIGN GOALS
The goal of our work is to design a fingerprinting protocol that

enables web servers to accurately identify a client’s device class.
We define a device class as a unique collection of {browser, operat-

Figure 1: High-level overview of device class fingerprinting. We
first send a challenge to an untrusted client asking it to prove its
purported device class (e.g., Safari on iOS) (Ê). The client returns
a response (Ë) which we verify to distinguish between an authentic
device and a system spoofing its User-Agent or any other aspects
of its browser or operating system (Ì).

ing system, graphics hardware}. We sketch a high-level overview
of our scheme in Figure 1. Consider two systems: an iPhone
running Safari on iOS and a cloud system running PhantomJS on
Linux. Both present a User-Agent string for Safari on iOS in addi-
tion to any number of spoofable browser configurations. A finger-
printing server issues a challenge to both untrusted systems asking
them to prove their purported device class (Ê). The clients both
return a response (Ë) which we verify to distinguish between an
authentic device and a spoofed system (Ì). We decompose this
challenge into its functional requirements as well as practical re-
quirements necessary to support a large-scale live deployment sce-
nario.

2.1 Functional Requirements
Device class fingerprinting: The primary goal of Picasso is to pro-
vide a challenge that accurately identifies the hardware and soft-
ware stack of a web client. This requirement is weaker than per-
device fingerprinting [16,20] that uniquely identifies individual de-
vices. This proof should be unpredictable even if an adversary has
perfect knowledge of our approach or access to previous challenge-
response pairs.

Hardware-bound proof of work: Picasso’s secondary objective is
to bind challenges with a configurable proof of work. This guaran-
tees that a device expends a certain amount of resources (e.g., CPU,
GPU, RAM) in order to solve a challenge. Picasso incorporates
these resources as part of its challenge which effectively prohibits
adversaries from offloading expensive computations to more pow-
erful devices of a different class (e.g., offload phone computation
to a desktop).

2.2 Operational Requirements
Cross-platform: Our approach must be applicable to a wide class
of devices and operating systems that include desktop clients,
phones, and even TV and game consoles. As part of this, we must
support both browsers and native applications.

No hardware modification: Picasso cannot require hardware
modifications to legacy devices. As part of this requirement,
our system cannot assume access to a TPM or custom hardware
PUF [24] to guarantee tamper-free execution or access to a unique
identifier.

Algorithm 1 Picasso One-Way Function

procedure CANVASHASH(s,N,A)
initRand(s)
canvas← initCanvas()
response← ∅
for i ∈ (0, N) do
primitive← selectRandomPrimitive()
color ← selectRandomColor()
shadow ← selectRandomShadow()
canvas.drawPrimitive(primitive, color, shadow)
response← hash(response, hash(canvas))

end for
return response

end procedure

Low latency verification: While challenges produced by Picasso
can be arbitrarily resource intensive, responses must be easily veri-
fied within a few milliseconds. This requirement does not preclude
the possibility of offline pre-processing.

Bandwidth constrained: Any challenge and response must be suf-
ficiently small to minimize network traffic produced during finger-
printing. We design for network speeds constrained to that of 2G
devices and analog modems.

2.3 Threat Model
We assume a threat model where an attacker has complete con-

trol over the device under analysis and all network traffic that
reaches the verifier. This includes complete access to the code that
comprises a challenge and perfect knowledge of the subsystems
queried by our computation. Finally, an attacker can have access to
a computationally bound number of prior valid challenge-response
pairs in order to attempt forging a device class fingerprint, the re-
strictions of which we explore in more detail in Section 3. Our
threat model sets us apart from previous research into user and de-
vice fingerprinting that frequently rely on a non-adversarial envi-
ronment where clients accurately report the results of tests or are
unaware of what environment variables are under observation.

3. BUILDING PICASSO
We design Picasso to incorporate artifacts produced by a sys-

tem’s browser, operating system, and graphical rendering stack
to produce a uniquely keyed one-way function that is equivalent
in concept to a physically unclonable function. In particular, we
rely on HTML canvas element rendering using JavaScript that was
previously shown to produce divergent outputs based on the un-
derlying software and system environment [16, 20]. We elect for
JavaScript and canvas elements as both are widely supported by
all browsers and modern devices. We can extend this support to
native applications via the canvas APIs provided by Android and
iOS. This satisfies our operational requirement of being both cross-
platform and requiring no new hardware.

3.1 Generating Challenges
We sketch how we convert HTML canvas drawings into a one-

way function with a configurably difficult proof of work in Al-
gorithm 1. To start, a server sends a copy of our algorithm
canvasHash to the client along with a random seed s and num-
ber of rounds N . The client then initializes a pseudorandom num-
ber generator packaged with our canvasHash algorithm with the

seed and creates a blank, hidden canvas of size A.1 At each round
the client elects a random graphical primitive such as drawing text,
curves, Béziers, or gradients. We randomize the values to these el-
ements each round to include color gradient, shadow, coordinates,
shape, and other properties as determined by our seed s. Finally,
we draw the element to the canvas before taking a snapshot of the
canvas and iteratively hashing it with the output of the previous
round. In our scheme, the number of rounds N and the screen size
of the canvas A enable the server to force a client to expend a con-
figurable amount of memory and computational resources. We use
the seed s to prevent replay attacks.

An optimal canvasHash implementation F(s,N,A) has two re-
quirements. First, the underlying set of graphical primitives must
produce a unique response on all devices of the same class when
provided identical inputs that is never produced by any other de-
vice. Secondly, this output must be stable regardless of other oper-
ations occurring on the device or slight rendering deviations within
a device class. This contrasts with CPU timing red pills which are
susceptible to processing and network bottlenecks that inject noise
into measurements [12, 15, 23]. We formally define both of these
requirements using Figure 2 as a guide.

Uniqueness: Consider two distinct device classes D and D′

that each represent a unique collection of clients with identical
browsers, operating systems (e.g., Chrome on Windows, Firefox
on Windows), and hardware. We define the pairwise uniqueness
between D and D′ as the total number of devices d ∈ D ∪D′ that
map via Picasso challenges into a response spaceRD⊗RD′ . In our
hypothetical scenario presented in Figure 2 only four of six devices
produce Picasso responses that are exclusive to their device class
yielding a uniqueness of 66.6%. An optimal graphical primitive
should produce 100% uniqueness for all challenges (s,N,A) for
all possible pairs of device classes to prevent ever misclassifying a
device’s class.

Stability: Within a single device class D we measure stability as
1/|RD|. This captures the number of potential valid responses per
device class. In our example, both D and D′ are 50% stable. An
optimal challenge should produce 100% stable signals for all pos-
sible (s,N,A). In practice, unlike uniqueness, we can afford a cer-
tain amount of instability. Subtle differences in GPUs or hardware
manufacturing, if triggered by our graphical primitives, will make
100% stable signatures for every Windows desktop system using
Firefox unlikely. To account for this Picasso can learn the set of
responses that define a device class rather than an exact response.
However, increasing instability runs the risk of producing collisions
between device classes that degrades uniqueness. Equally problem-
atic, it is untenable to store thousands of responses for verification
as we outline shortly.

We experimentally validate which set of graphical primitives
achieve both of these properties in Section 4 and confirm their ef-
fectiveness in practice in a live deployment scenario in Section 5.

3.2 Verifying Responses
The intended unpredictable output of our challenge poses a

unique problem for verification: like attackers, we cannot produce
the correct answer without access to the client’s system. In the ab-
sence of a built-in trap door we rely instead on a computational
constraint: we assume that the number of devices accessible to an
online service (e.g., its user base) is larger than the pool of devices
1In practice, canvases must be larger than 100 pixels to generate
sufficient divergent properties. As we can hide canvas elements,
this size has no discernible impact to clients other than increasing
computation costs.

Figure 2: Surjection produced by F(s,N,A) between device classes
D and the resulting space of canvas hash responses R.

controlled by an attacker. This assumption is unrealistic for per-
sonal websites but entirely feasible for large web services such as
Google, Facebook, or Yahoo that are lucrative targets for automated
abuse due to serving billions of users.

During a bootstrap phase our server constructs a dictionary of
challenge-response pairs and their mapping to device classes. We
propose three approaches to generate this initial dictionary: (1)
identifying large clusters of clients (or trusted logged in users) that
all generate the same Picasso response and report the same User-
Agent string;2 (2) querying a set of trusted users (e.g., colleagues,
employees) who own a diversity of devices; or in the worse case
(3) purchasing the devices of interest ourselves and configuring
their software stack to produce a challenge-response pair for ev-
ery software combination. Regardless of the approach, this pain
point occurs only once.

After bootstrapping, the server can generate an infinite number
of challenge-response pairs by sending clients one challenge with a
known response and an arbitrary number of challenges with un-
known solutions. If clients provide an accurate response to the
known challenge we consider all other responses valid. An incor-
rect response invalidates all other challenges. Our approach is sim-
ilar to how reCAPTCHA serves unrecognized text from digitized
books alongside known mutated text [11]. Like reCAPTCHA, we
must resist pollution attacks where an adversary with one or more
valid Picasso responses attempts to submit bogus responses to un-
known challenges. We use a thresholding strategy where a fraction
of at least τ devices must report the same challenge-response pair-
ing. We refer readers to the ESP game structure proposed by Von
Ahn et al. for combating cheating in user-generated labels that we
re-use [28].

The end result is a challenge-response pair database that is con-
stantly updated to prevent an attacker from pre computing a suffi-
ciently large number of results to replay. Verification of live traffic
is a simple dictionary lookup which satisfies our low latency re-
quirement. If we find a match, we return the client’s device class.
A miss indicates we have never encountered the device before, or
more likely, the client supplied a fake response as part of a brute
force or pollution attack.

3.3 Assumptions & Limitations
We explicitly outline the assumptions built into our design as

well as limitations of device class fingerprinting in the face of
widespread compromise. First, we assume that a device’s graph-
ical stack in conjunction with OS and browser disparities produces
an unpredictable output in kind to a PUF. As part of this assump-
2One limitation of this approach is that User-Agents do not report
hardware configurations. As such, we would be limited to finger-
printing a client’s browser and operating system.

tion, we postulate that the complexity of input and output combi-
nations is intractable for an attacker to learn and use to produce
an equivalent graphical emulator as researchers have previously
demonstrated for some implementations of PUFs [25]. Second, we
assume that an attacker’s computational power is strictly less than
the online service deploying Picasso. This is necessary to prevent
an attacker from building a dictionary of known challenge-response
pairs at a faster rate than the server Picasso protects. While smaller
services cannot satisfy this requirement, we envision a system sim-
ilar to reCAPTCHA that provides Picasso as a service to third par-
ties.

We note that Picasso cannot prevent an attacker from fowarding
device fingerprint challenges to compromised unemulated mobile
or desktop systems for solving. To impede the creation of solution
farms, Picasso can increase the computation complexity of each
solution while balancing resource usage acceptable for legitimate
clients.

Device fingerprinting as an abuse fighting tool is only useful in
the absence of wide-spread compromise. With millions of infected
desktop systems participating in botnets, a sufficiently motivated
attacker can use a victim’s native browser to satisfy a device finger-
print challenge that indicates a real operating system and browser.
Picasso still helps to protect against headless browsers like Phan-
tomJS and HtmlUnit as well as emulators. Conversely, mobile
malware has yet to reach the pervasive infection levels of desk-
top environments [18]. We argue there is still a significant value in
detecting differences between emulated, desktop, and mobile en-
vironments that motivates deploying a system like Picasso. We
demonstrate this fact later in Section 5.

4. EXPERIMENTAL VALIDATION
We evaluate the overall feasibility of Picasso and derive which

HTML5 canvas operations are best suited for accurate device class.
In particular, we consider four HTML5 canvas drawing operations
as candidate graphical primitives for our canvas hash algorithm:
arc(), strokeText(), bezierCurveTo(), quadraticCurveTo(). Our in-
tuition is that each method introduces aliasing artifacts and poten-
tially divergent logic in calculating the angles between midpoints
or font shapes as recognized by prior work [2, 7, 20]. Each method
has a unique list of parameters (e.g., coordinates, length, angle,
width). We automatically generate a value for each that is within
the range of valid values. We further style every object with creat-
eRadialGradient(), shadowBlur(), and shadowColor() to introduce
as much graphical entropy per object as possible. We evaluate these
primitives in a limited controlled setting before validating our find-
ings on a dataset of 272,198 devices.

4.1 Initial Proof of Concept
As an initial proof of concept, we executed a prototype of Picasso

on single Macbook Pro running Mac OSX. We then compared the
canvases produced by three different browsers when provided an
identical Picasso challenge. Figure 3 shows the per-pixel rendering
differences between a canvas produced by Chrome, Firefox, and
Safari as highlighted in red. We observe substantial divergent be-
havior between each browser’s HTML5 canvas implementation.

We repeated this process for 1,000 different challenges on can-
vases of size 200px × 200px and averaged our results. Figure 4a
summarizes the average distance |r1 − r2|+ |g1 − g2|+ |b1 − b2|
between the RGB values for each pixel produced by Chrome vs.
Firefox and Chrome vs. Safari, broken down by graphical primi-
tive. The majority of rendering entropy is fairly minor in terms of
absolute difference. However, in aggregate, the noise introduced
by each browser’s rendering stack causes a median of 40–70% of

Figure 3: Visualization of the rendering differences between the
same Picasso challenge for various browsers. We indicate in red
the per-pixel difference between each browser pair.

Circle
Font
Bezier
Quadratic

%
 o

f c
an

va
s

ha
vi

ng
 a

t l
ea

st
 a

 g
iv

en
 d

is
ta

nc
e

0%

20%

40%

60%

80%

100%

Avg distance between pixels
Chrome vs Safari

0 50 100 150
Avg distance between pixels

Chrome vs Firefox

0 50 100 150

Average pixel distance in RGB space inverse CDF

(a) Average per-pixel RGB differences.

Circle
Font
Bezier
Quadratic

%
 o

f c
an

va
s

0%

20%

40%

60%

80%

100%

% of pixels that are different
Chrome vs Safari

0% 20% 40% 60% 80% 100%
% of pixels that are different

Chrome vs Firefox

0% 20% 40% 60% 80% 100%

% of canvas having at least a given fraction of non-white pixels
that are different inverse CDF

(b) Average per-canvas pixel differences.

Figure 4: Divergent canvas drawings produced by Chrome, Safari,
and Firefox running on the same hardware and operating system.

Figure 5: Visualization of the rendering differences between an
emulated and real iOS device using the same software stack. We
indicate in red the per-pixel Picasso solution differences.

Browser Sample Size

Chrome 28 17,016
Chrome 29 184,634
Chrome 30 1,896
Chrome 31 1,107
iOS browser 35,644
Firefox 23 30,030
Safari 6 769

Other 1,082

Table 1: Breakdown of client browsers in our dataset.

all non-white pixels to differ as shown in Figure 4b. For an at-
tacker to spoof a valid response without access to the device in
question, she must learn all of the nuances of each rendering stack.
Even a single pixel intensity or placement difference will cause an
avalanche effect in our canvas hash algorithm that results in an in-
valid response.

Our device class detection extends to emulated devices versus
real devices. As a proof of concept, we compare the visual output
of an identical Picasso challenge solved by an emulated iOS device
and the corresponding real iOS device, both running an identical
software stack. Figure 5 shows the per-pixel rendering differences
between the two devices which appear drastically different. These
results highlight Picasso identifiers more than software variations;
it extends to the graphical stack of devices. As such, an attacker
cannot rely on off-the-shelf emulation to solve Picasso challenges
in an attempt to masquerade as a real device.

4.2 Broader Experimental Validation
We prove that Picasso accurately generalizes to all device

classes, not just our synthetic example, by evaluating our candi-
date primitives on a sample of inbound traffic to Google. As part
of our experiment, we served each client a Picasso challenge in the
form of a light-weight JavaScript payload consisting of 0.86KB.
We randomized the challenge parameters as follows: we served
each client a random seed s between (0, 1000), number of rounds
N between (1, 3), and a fixed canvas size A of 200px × 200px.
At each round we selected a pseudorandom primitive from the set
{circle, font, bezier, quadratic} as well as pseudorandom gra-
dients, blurs, and colors. All parameter selection is uniquely tied to
s so that all devices served a challenge (s,N,A) execute the same
computation.

In total, we collected 272,178 Picasso challenge-response pairs
in August, 2013.3 We relied on each client’s User-Agent string as
a ground truth label of each device’s browser and operating sys-
tem. While we cannot guarantee that spoofing is absent from our
measurement, we attempted to mitigate its potential by restricting
our analysis to traffic from signed-in users at the web service un-
der evaluation as well as using JavaScript to fetch the User-Agent
rather than via user supplied headers. We note that Picasso provides
more insight than a User-Agent: it also captures entropy induced
by a system’s underlying hardware. However, we have no way to
query a client’s physical system settings and thus cannot evaluate
hardware-level uniqueness and stability.

We provide a breakdown of every client’s browser and operat-
ing system in our dataset in Table 1 and Table 2 respectively. We
note that for browsers we aggregate all iOS browsers including Sa-

3As two years have passed since our initial experiment many of
the browser versions we analyze are now obsolete. We confirm our
experiments still hold for current systems in Section 5.

Operating Systems Sample Size

Windows Vista 7,231
Windows XP 60,535
Windows 7 138,416
Windows 8 22,542
OSX 10 6,483
iOS 6 31,655
iOS 7 3,989
Linux 719

Other 608

Table 2: Breakdown of client operating systems in our dataset.

fari, Chrome, and iCab as a single family as they all use the Apple
WebView API. Our “other” category consists of clients with too
few samples to be statistically significant for our study: Blackberry,
Firefox on Android, Iron browser, and more.

Noticeably absent from our experiment is Internet Explorer. This
is because older versions of the browser until version 9 do not sup-
port HTML5 canvases. Conversely, IE6–8 represented a substantial
fraction of our traffic feed. In practice, we can likely extend our ap-
proach to these older browsers through Vector Markup Language
(VML) or by supplying a third-party JavaScript implementation of
the canvas element. For our initial validation we restrict ourselves
to HTML5 compatible browsers.

4.3 Fingerprinting Performance
We use our dataset to measure two properties tied to each candi-

date graphical primitive to verify their effectiveness in device class
fingerprint: uniqueness and stability as outlined previously in Sec-
tion 3. We then measure the overall accuracy achieved by com-
binations of each primitive with respect to the number of canvas
operations Picasso performs.

Uniqueness: We consider four types of pair-wise uniqueness:
distinguishing OS families, OS versions, browser families, and
browser versions. As performance will vary across challenges
(s,N,A), we average the uniqueness results of all challenges. As
Picasso randomizes the primitive used each round N , we restrict
this part of our analysis to 92,490 challenges that consisted of only
one round. Furthermore, we omit pair-wise evaluations where we
lack more than 1,000 samples. As such, all reported uniqueness
measures are within ±3% at 95% confidence.
Operating system vs. operating system: For our first calculation,
we examine whether our four graphical primitives can identify a
client’s OS irrespective of the client’s associated browser or hard-
ware. Our results in Table 3a indicate that the graphical rendering
stack provided by an OS produces unique Picasso results. This is
true 100% of the time for font-specific text drawn by the stroke-
Text() primitive. Surprisingly, we find that all other graphical prim-
itives fail to distinguish between Mac OSX and Windows over 80%
of the time.
OS version vs. OS version: When we apply the same pairwise mea-
surement to clients with identical operating systems but different
versions we observe a degradation in performance. We provide a
detailed breakdown of results in Table 3b. We find that the graphi-
cal stack between iOS6 and iOS7 is completely different and yields
100% unique Picasso responses for three out of four of our primi-
tives. In contrast, no primitive can produce a unique challenge that
distinguishes Windows XP from 7 or 8. Our results indicate that
100% OS version granularity derived purely from graphical noise
is likely intractable given our current set of primitives.

Operating System Pairing Circle Font Bézier Quadratic

Linux vs. iOS 100.0% 100.0% 100.0% 100.0%
Mac OSX vs. Linux 95.7% 100.0% 91.8% 81.0%
Mac OSX vs. iOS 94.3% 100.0% 99.2% 98.6%
Windows vs. Linux 95.2% 100.0% 91.1% 76.0%
Windows vs. Mac OSX 20.5% 100.0% 14.0% 16.4%
Windows vs. iOS 100.0% 100.0% 100.0% 100.0%

(a) Performance of candidate graphical primitives at uniquely identifying operating systems irrespective of browser or hardware.

Operating System Version Pairing Circle Font Bézier Quadratic

Windows 7 vs. Windows 8 6.6% 11.7% 5.7% 4.0%
Windows 7 vs. Windows Vista 12.0% 13.6% 7.3% 7.2%
Windows 7 vs. Windows XP 3.9% 7.4% 3.4% 4.5%
Windows 8 vs. Windows Vista 10.7% 11.7% 8.1% 8.0%
Windows 8 vs. Windows XP 10.0% 20.7% 8.0% 5.9%
Windows Vista vs. Windows XP 12.1% 19.7% 6.8% 3.7%
iOS 6 vs. iOS 7 99.7% 100.0% 100.0% 100.0%

(b) Performance of candidate graphical primitives at uniquely identifying operating systems versions within the same family irrespec-
tive of browser or hardware.

Browser Pairing Circle Font Bézier Quadratic

Chrome vs. Firefox 100.0% 100.0% 100.0% 100.0%
Chrome vs. Safari 100.0% 100.0% 100.0% 100.0%
Chrome vs. iOS Browser 100.0% 100.0% 100.0% 100.0%
Firefox vs. Safari 100.0% 100.0% 100.0% 100.0%
Firefox vs. iOS Browser 100.0% 100.0% 100.0% 100.0%
iOS Browser vs. Safari 88.7% 100.0% 98.3% 97.3%

(c) Performance of candidate graphical primitives at uniquely identifying browser families irrespective of operating system or hard-
ware.

Browser Version Pairing Circle Font Bézier Quadratic

Chrome 28 vs. Chrome 29 72.3% 6.9% 0.1% 0.1%
Chrome 28 vs. Chrome 30 80.1% 17.7% 0.3% 0.6%
Chrome 28 vs. Chrome 31 92.7% 14.0% 0.3% 0.8%
Chrome 29 vs. Chrome 30 0.5% 17.7% 0.1% 0.2%
Chrome 29 vs. Chrome 31 0.6% 14.2% 0.1% 0.2%
Chrome 30 vs. Chrome 31 1.2% 11.9% 0.0% 0.5%

(d) Performance of candidate graphical primitives at uniquely identifying browser versions within the same family irrespective of
operating system or hardware.

Table 3: Uniqueness metrics for graphical primitives.

Browser vs. browser: We present our pair-wise comparison of
browser uniqueness irrespective of OS and hardware in Table 3c.
We find that divergent canvas implementations per browser perform
even better than OS-level differences at producing unique Picasso
responses. Every primitive is nearly 100% successful at differenti-
ating browsers with the exception of iOS implementation of Safari
vs. non-iOS Safari.
Browser version vs. browser version: If we control for browser
family and analyze only alternate browser versions, we find our re-
sponses are far less unique as shown in Table 3d. As with operating
systems, it appears unlikely that Picasso can yield any insights on
a client’s browser version using our proposed primitives.

Stability: We measure the stability of responses produced by in-
dividual browsers and operating systems as the average number of
responses generated per challenge (s,N,A). As with uniqueness,
we omit all challenges that consisted of more than one round so
we can examine primitives in isolation. We present our results in
Table 4. We observe that Windows has the least stable of all device
characteristics. We believe this is due to the variety of underly-
ing hardware that composes the Windows ecosystem compared to
iOS which is largely homogeneous. Our font primitive is the least
stable. Intuitively, this is a byproduct of fonts producing the most
unique device class signatures, but one that is highly system de-
pendent. Our initial investigation reveals in the worst case Picasso
must store 10 responses per challenge which we consider accept-
able. In practice, we expect stability to decrease as a function of
the number of devices in a class due to hardware differences. We
explore this further in our live deployment scenario discussed in
Section 5.

Chaining primitives: Our final evaluation examines the impact of
chaining multiple primitives on Picasso’s overall uniqueness and
stability at distinguishing devices device classes of type {operat-
ing system, browser}, averaged across all pairs. We present our
results in Table 5 broken down by the number of rounds. We find
that absent using a primitive at least once that generates font text,
Picasso can uniquely distinguish devices 28% of the time. This in-
creases slightly with the number of rounds to a maximum of 32%.
In contrast, when we include a font based primitive at least once, we
observe 100% unique device class responses.4 Independent of the
primitive used, an increasing number of rounds slightly decreases
the stability of responses. In effect, each element drawn to a can-
vas exacerbates the noise introduced by a system’s hardware and
software. We synthesize these observations into our final Picasso
implementation later in Section 5.

4.4 System Performance
We conclude our feasibility experiments with an analysis of the

CPU and memory required to generate an authentic Picasso re-
sponse given a variable number of rounds and canvas sizes. We
conduct our measurements on a local machine running Firefox,
Chrome, and Safari to enable accurate reporting and to avoid sub-
jecting live web clients to excessive resource consumption. We find
that resource requirements for Picasso increase linearly with the
number of rounds. This satisfies our design goal for a configurably
difficult proof of work.

4We are unable to determine why uniqueness dropped for two
round computations. We note that all metrics are within ± 3% of
their true value.

Device Circle Font Bézier Quad.

Chrome 42.9% 14.1% 75.1% 68.6%
Firefox 19.4% 15.8% 19.8% 19.0%
Safari 84.0% 80.5% 78.0% 96.8%
iOS Browser 46.2% 29.4% 45.7% 47.6%

iOS 46.2% 29.4% 45.7% 47.6%
Linux 81.8% 79.3% 89.6% 74.4%
Mac OSX 38.1% 40.0% 42.6% 46.5%
Windows 16.1% 9.0% 19.3% 18.7%

Table 4: Average graphical primitive stability for various families
of operating systems and browsers.

Metric Round 1 Round 2 Round 3

Uniquenessnofont 28% 30% 32%
Stabilitynofont 53% 49% 47%

Uniquenessfont 100% 98% 100%
Stabilityfont 31% 30% 27%

Table 5: Browser and operating system uniqueness and stability as
a function of the number of rounds N and whether we include font
text as a graphical primitive.

Chrome
Firefox
Safari

D
ra

w
in

g
tim

e
in

 m
s

0ms

100ms

200ms

300ms

400ms

Number of rounds
5 10 15 20 25 30 35 40 45 50

Figure 6: CPU consumption of Firefox, Chrome, and Safari in a
controlled environment where Picasso required an increasing num-
ber of rounds.

Chrome
Firefox
Safari

R
am

 c
on

su
m

m
ed

 in
 k

ilo
by

te
s

0KB

100KB

200KB

300KB

400KB

Size of the canvas
500px2 1000px2 1500px2 2000px2 2500px2 3000px2 3500px2 4000px24500px2

Figure 7: Memory consumption of Firefox, Chrome, and Safari
in a controlled environment where Picasso required an increasing
canvas sizes.

0%

100%

100%

100%

100%

100%

100%

100%

100%

0%

100%

100%

100%

100%

100%

100%

100%

100%

0%

100%

100%

100%

100%

100%

100%

100%

100%

0%

100%

100%

100%

100%

100%

100%

100%

100%

0%

100%

100%

100%

100%

100%

100%

100%

100%

0%

100%

100%

100%

100%

100%

100%

100%

100%

0%

100%

100%

100%

100%

100%

100%

100%

100%

0%

Android browser − Android

Chrome − OSX

Chrome − Windows

Firefox − OSX

Firefox − Windows

Internet Explorer − Windows

iOS browser − iOS

Safari − OSX

Android browser − Android

Chrome − OSX

Chrome − Windows

Firefox − OSX

Firefox − Windows

Internet Explorer − Windows

iOS browser − iOS
Safari − OSX

Figure 8: Pairwise uniqueness between all browsers and operating systems appearing in our dataset of 52 million clients.

CPU consumption: Using a controlled environment we computed
the CPU usage of our JavaScript payload for challenges with N =
(1, 50) and averaged over 50 trials each with a randomized s. We
present our results in Figure 6. We observe a linear increase in
the time necessary to produce a Picasso response with the size of
N . The most complex challenge requires upwards of 400ms to
compute, well within a range suitable for multiple device classes.

Memory consumption: As a final experiment, we briefly eval-
uated the feasibility of controlling the amount of RAM required
to solve a Picasso challenge as a function of the canvas size. For
each test we varied the canvas size between (5002px, 45002px) at
intervals of 5002px with a randomized seed s per trial and fixed
N = 10. To avoid any possible caching we terminated the browser
process between each trial. Figure 7 reports the additional average
real segment size used by each browser compared to the 5002px.
While memory needed to compute the challenge increased with the
canvas size for Firefox and Chrome as expected, Safari showed (al-
most) no increase. We believe this is because Safari requests a large
memory block (170MB) and then manages its own memory alloca-
tion afterwards. Our results indicate we can tune the memory usage
of our system to create increasingly complex proofs of work.

5. REAL WORLD DEPLOYMENT
As a final validation we explore Picasso’s effectiveness at de-

tecting (spoofed) device classes in a live deployment scenario at
Google. We issued Picasso challenges to 52 million clients over a
two week period in February 2015. We present a detailed break-
down of Picasso’s overall accuracy and demonstrate how Picasso
detected a brute force password guessing attack.

5.1 Uniqueness & Stability
Our live deployment of Picasso ran the same algorithm presented

in Section 3 with two modifications. First, we executed four rounds
and selected graphical primitives in such a way that each primitive
was used at least once. This maximized the potential uniqueness
per client without sacrificing stability as we showed in Section 4.
Next, we fixed the seed s for the entire deployment to minimize the
number of unique responses we had to store.

Device class accuracy: We verify that Picasso uniquely identifies
Windows, OSX, Android, and iOS systems running a multitude of

browsers. As we lack ground truth of a client’s device class, we
again relied on a User-Agent derived from JavaScript. Due to the
likelihood of spoofed devices in our dataset, we restricted our anal-
ysis to clusters of 10,000 or more clients (0.02% of traffic) that
returned the same Picasso response and purported User-Agent. We
present the pairwise uniqueness between all browser and operating
systems in our dataset in Figure 8. We find our final Picasso imple-
mentation distinguishes device classes with 100% accuracy. This
is true for all combinations of browsers and desktop and mobile
operating systems.

Our accuracy is restricted to browser and operating system fam-
ilies, not versions. Figure 9 shows Picasso’s performance at
uniquely identifying Chrome versions all running on Windows 7
and unknown hardware. We find that, in the worst case, we con-
flate 40.8% Chrome 36 and 35 clients. A similar picture emerges
in Figure 10 for the pairwise uniqueness of Windows systems all
running Chrome 40 and unknown hardware. We conflate 56.4%
of Windows 8 and Windows 8.1 systems. Our results indicate that
Picasso achieves its goal of device class fingerprinting, but only at
a family granularity.

Stability & storage requirements: Our live deployment yielded
roughly 130,000 unique responses from the 52 million challenges
we sent to clients. We find that responses form a long tail distribu-
tion: the top 100 responses cover 73% of all clients; the top 1,000
responses 95% of clients; and the top 10,000 responses 99% of
clients. We reiterate that this distribution is at odds with device fin-
gerprinting: Picasso’s graphical primitives are incapable of unique
client identification.

We present the number of responses a Picasso server must store
to accurately distinguish individual operating system and browser
pairs in Figure 11. We find that Mac OSX and iOS provide the most
stable signatures: 100 responses capture 98% of all such clients. In
contrast, the top 100 responses from purported Firefox clients on
Windows accounts for 88% of clients. The same scenario covers
94% of Windows Internet Explorer users. As User-Agent spoofing
is likely present in our dataset we argue these breakdowns present
a worst case scenario. If we restrict Picasso’s hash function to 32
bits of output, we must store a total of roughly 520KB per seed to
guarantee 100% coverage. If we reduce coverage to 99% of clients,
this storage requirement drops to 40KB per seed.

0%

59.2%

97.4%

100%

87%

92.5%

59.2%

0%

100%

98.1%

86.6%

96.6%

97.4%

100%

0%

100%

94.9%

99%

100%

98.1%

100%

0%

96.3%

100%

87%

86.6%

94.9%

96.3%

0%

91.3%

92.5%

96.6%

99%

100%

91.3%

0%

Chrome 35

Chrome 36

Chrome 37

Chrome 38

Chrome 39

Chrome 40

Chrome 35

Chrome 36

Chrome 37

Chrome 38

Chrome 39

Chrome 40

Figure 9: Pairwise uniqueness of Chrome versions for clients all
running Windows 7 on unknown hardware.

0%

100%

100%

96.8%

100%

100%

100%

0%

100%

100%

100%

89.9%

100%

100%

0%

96.8%

88.9%

99%

96.8%

100%

96.8%

0%

57.4%

95.8%

100%

100%

88.9%

57.4%

0%

98.1%

100%

89.9%

99%

95.8%

98.1%

0%

Windows 10

Windows 7

Windows 8

Windows 8.1

Windows Vista

Windows XP

Windows 10

Windows 7

Windows 8

Windows 8.1

Windows Vista

Windows XP

Figure 10: Pairwise uniqueness of Windows versions for clients
all running Chrome 40 on unknown hardware.

5.2 Identifying Spoofed Clients
During our deployment we observed two attacks that Picasso sur-

faced. Both campaigns attempted to brute force the login page be-
longing to the web company we collaborated with. We detected
each attack by scanning for large volumes of incoming requests
with purported User-Agents that conflicted with the device class
indicated by Picasso. We present a breakdown of the spoofed User-
Agents used by each attack in Figure 12. Working back from the Pi-
casso responses and IPs involved, we identified that one attack was
launched directly from (potentially compromised) Amazon AWS
instances, while the other attack was proxied through hosts in North
America, Europe, and Russia—some of which also appear in Tor’s
directory listing. Both attacks share a device class signature we
know to belong to PhantomJS running on Linux and EC2 hard-
ware. This simple scenario highlights the effectiveness of device
class signatures at helping to differentiate malicious clients.

6. RELATED WORK
User fingerprinting: Fingerprinting techniques attempt to
uniquely detect devices and users in the absence of overt track-
ing mechanisms such as cookies. Previous schemes build on
side effects induced by browsers, operating systems, and hard-
ware. Researchers have considered a wealth of techniques ranging
from User-Agent strings, header orders, font lists, enabled plug-
ins, IP addresses, screen sizes, and time zones to uniquely identify
clients [4, 6, 22]. Similarly, divergent JavaScript, HTML, and CSS
implementations across browser stacks (and even versions) yield
unique test outputs and timing information [19,21,27]. Researchers
have proposed even lower level detection approaches to fingerprint
CPU and device timings [3, 12, 15, 23], memory patterns [10], as

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●
●
●
●
●
●●

●●
●●
●●
●●
●●●

●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●●
●●

●●
●●●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●●●●●●

●●
●●

●●
●●●

●●●
●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●

●●●
●●

25%

50%

75%

100%

1 10 100 1000
Responses

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f c
lie

nt
s

● ●Chrome − Android

Chrome − Mac OSX

Chrome − Windows

Firefox − Windows

IE − Windows

Safari − iOS

Figure 11: Cumulative coverage of device populations broken
down by operating system and browser family. The top 100 re-
sponses for each category cover 88–98% of clients.

well as browser fonts and canvas elements that surface GPU and
operating system divergences [7,20], some of which are widely de-
ployed by web services today [1]. Our system instead found a set of
signals that are non-spoofable and accurately distinguish classes of
devices, but have minimal variations between devices in the same
class.

Puzzles & proofs of work: The central idea of a proof of work is
to design a challenge that is difficult to solve but trivial to verify.
In the process a client expends arbitrary computation or memory
as specified by a server [5]. While simple scenarios consider find-
ing at an input that hashes to a configurably difficult output (e.g.,
a hash that starts with n ones), attackers can offload challenges to
more powerful computational devices or spread work among com-
promised hosts [17]. Again, we built on this concept, but limited
our hardware-bound proof of work to device classes in order to pre-
vent attackers from offloading to other device classes (e.g., solving
challenges intended for mobile devices on cloud machinery.)

7. CONCLUSION
In this paper we presented Picasso, a system that leverages the

complexity of a device’s browser, operating system, and graph-
ical stack to provide accurate device class fingerprinting with a
hardware-bound proof of work. Our JavaScript implementation
of Picasso, when properly configured using the right graphical
primitives, is able to successfully distinguish the browser family
(Chrome, Firefox, etc.) and the OS family (Windows, iOS, OSX,
etc.) of over 52 million clients with 100% accuracy. Web ser-
vices can use Picasso to filter inorganic traffic. We perceive a num-
ber of applications including blocking non-mobile clients from app
marketplaces; detecting rogue login attempts to a client’s account;
and detecting emulated clients. As a consequence, attackers can
no longer rely on simple automation techniques and instead must
conform to the device class of organic users.

1.6%

93.3%

4.6%

8%

3.8%

15.5%

15.%

10.4%

13.%

18.1%

1.3%

10.4%

2.6%

Attack 1
Attack 2Safari 8

Safari 7.1
Safari 7
Safari 6
Safari 5

iOS 8
iOS 7.1

IE 11
Firefox 36

Chrome 37
Chrome 36
Chrome 35
Chrome 22

Fraction of attempts
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 12: Purported User-Agents provided by malicious clients in
two distinct attacks. Miscreants launched both attacks via Amazon
EC2 instances running PhantomJS.

8. REFERENCES
[1] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan,

and C. Diaz. The web never forgets: Persistent tracking
mechanisms in the wild. In Proceedings of the Conference on
Computer and Communications Security, 2014.

[2] T. Ahrens. Type rendering mix.
http://blog.typekit.com/2013/12/18/ type-rendering-mix/ .

[3] A. Bates, R. Leonard, H. Pruse, D. Lowd, and K. Butler.
Leveraging usb to establish host identity using commodity
devices. In Proceedings of the ISOC Network and
Distributed Systems Symposium (NDSS), 2014.

[4] K. Boda, Á. M. Földes, G. G. Gulyás, and S. Imre. User
tracking on the web via cross-browser fingerprinting. In
Information Security Technology for Applications. 2012.

[5] C. Dwork, A. Goldberg, and M. Naor. On memory-bound
functions for fighting spam. In In Proceedings of Advances
in Cryptology, 2003.

[6] P. Eckersley. How unique is your web browser? In
Proceedings of the Privacy Enhancing Technologies
Symposium, 2010.

[7] D. Fifield and S. Egelman. Fingerprinting web users through
font metrics. In Proceedings of the International Conference
on Financial Cryptography and Data Security, 2015.

[8] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Y. Zhao.
Detecting and characterizing social spam campaigns. In
Proceedings of the ACM SIGCOM Internet Measurement
Conference, 2010.

[9] C. Grier, K. Thomas, V. Paxson, and M. Zhang. @ spam: the
underground on 140 characters or less. In Proceedings of the
17th ACM conference on Computer and communications
security, 2010.

[10] Y. Gu, Y. Fu, A. Prakash, Z. Lin, and H. Yin. Os-sommelier:
Memory-only operating system fingerprinting in the cloud.
In Proceedings of the Third ACM Symposium on Cloud
Computing, 2012.

[11] G. Gugliotta. Deciphering old texts, one woozy, curvy word
at a time. http:
//www.nytimes.com/2011/03/29/science/29recaptcha.html,
2011.

[12] G. Ho, D. Boneh, L. Ballard, and N. Provos. Tick tock:
building browser red pills from timing side channels. In

Proceedings of the USENIX Workshop on Offensive
Technologies, 2014.

[13] C. Hoffberger. Youtube strips universal and sony of 2 billion
fake views. http://bit.ly/10MpDse, 2012.

[14] T.-K. Huang, M. S. Rahman, H. V. Madhyastha, and
M. Faloutsos. An analysis of socware cascades in online
social networks. In Proceedings of the International
Conference on the World Wide Web, 2013.

[15] T. Kohno, A. Broido, and K. C. Claffy. Remote physical
device fingerprinting. Proceedings of the IEEE Transactions
on Dependable and Secure Computing, 2005.

[16] P. Laperdrix, W. Rudametkin, and B. Baudry. Beauty and the
beast: Diverting modern web browsers to build unique
browser fingerprints. In Proceedings of the IEEE Symposium
on Security and Privacy, 2016.

[17] B. Laurie and R. Clayton. Proof-of-work proves not to work;
version 0.2. In In Proceedings of the Workshop on
Economics and Information Security, 2004.

[18] C. Lever, M. Antonakakis, B. Reaves, P. Traynor, and
W. Lee. The core of the matter: Analyzing malicious traffic
in cellular carriers. In Proceedings of the Network and
Distributed System Security Conference, 2013.

[19] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham.
Fingerprinting information in javascript implementations. In
Proceedings of the Workshop on Web 2.0 Security and
Privacy, 2011.

[20] K. Mowery and H. Shacham. Pixel perfect: Fingerprinting
canvas in html5. In Proceedings of the Workshop on Web 2.0
Security and Privacy, 2012.

[21] M. Mulazzani, P. Reschl, M. Huber, M. Leithner,
S. Schrittwieser, E. Weippl, and F. Wien. Fast and reliable
browser identification with javascript engine fingerprinting.
In Proceedings of the Workshop on Web 2.0 Security and
Privacy, 2013.

[22] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless monster: Exploring
the ecosystem of web-based device fingerprinting. In
Security and Privacy (SP), 2013 IEEE Symposium on, pages
541–555. IEEE, 2013.

[23] R. Paleari, L. Martignoni, G. F. Roglia, and D. Bruschi. A
fistful of red-pills: How to automatically generate procedures
to detect cpu emulators. In Proceedings of the USENIX
Workshop on Offensive Technologies, 2009.

[24] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. Physical
one-way functions. Science, 2002.

[25] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber. Modeling attacks on physical unclonable
functions. In Proceedings of the Conference on Computer
and Communications Security, 2010.

[26] K. Thomas, F. Li, C. Grier, and V. Paxson. Consequences of
connectivity: Characterizing account hijacking on twitter. In
Proceedings of the Conference on Computer and
Communications Security, 2014.

[27] T. Unger, M. Mulazzani, D. Fruhwirt, M. Huber,
S. Schrittwieser, and E. Weippl. Shpf: enhancing http(s)
session security with browser fingerprinting. In Proceedings
of the International Conference on Availability, Reliability
and Security, 2013.

[28] L. Von Ahn and L. Dabbish. Labeling images with a
computer game. In Proceedings of the SIGCHI conference
on Human factors in computing systems, 2004.

